# Notes

# General notes

# Ideal gas law

  • P = pressure of gas
  • V = volume of gas
  • n = number of moles
  • R = gas constant, 8.314JKmol8.314 \frac{J}{K\text{mol}}
  • T = temperature in kelvin
  • N = number of atoms
  • K = Boltzman's constant, 1.381×1023J/K1.381\times 10^{-23}J/K

PV=nRTPV=nRT

PV=NKTPV=NKT

# During adiabatic compression

  1. PVγ=constPV^{\gamma} = const, γ=(f+2)/f\gamma = (f+2)/f
  2. VTf2=constVT^{\frac{f}{2}} = const

# Entropy of an ideal gas

Given by the famous Sackur-Tetrode equation

S=Nk(lnVUf/2N(f/2)+1+c)S = Nk\left(\ln\frac{VU^{f/2}}{N^{(f/2)+1}} + c \right)

# Multiplicy

# Multiplicity of paramagnet

(Nq)=N!(Nq)!q!{N \choose q} = \frac{N!}{(N-q)!q!}

# Multiplicity of Einstein solid

(N+q1q)=(N+q1)!(N1)!q!{N+q-1 \choose q} = \frac{(N+q-1)!}{(N-1)!q!}

# Sirling approximation

Stirling's approximation is a good approximation for factorials

lnN!Nln(N)N\ln N! \approx N\ln(N) - N

# Chapter 5

# Thermodynamic identities

dG=SdT+VdP+μdNdG = -SdT + VdP + \mu dN
dU=TdSPdV+μdNdU = TdS - PdV + \mu dN
dF=dUd(ST)=SdTPdV+μdNdF = dU - d(ST) = -SdT - PdV + \mu dN
dG=dHd(ST)=SdT+vdP+μdNdG = dH - d(ST) = -SdT + vdP + \mu dN

# Maxwell relations

N(USV,N)V,S=S(UNV,S)V,N\frac{\partial}{\partial N} (\frac{\partial U}{\partial S} |_{V,N})|_{V,S} = \frac{\partial}{\partial S} (\frac{\partial U}{\partial N} |_{V,S})|_{V,N}

# Clausius-Clapeyron equation

According to wikipedia: This equation a way of characterizing a discontinuous phase transition between two phases of matter of a single constituent.

dPdT=LTΔV\frac{dP}{dT} = \frac{L}{T\Delta V}

# Gibbs free energy and chemical potential

μ=(GN)T,P\mu = \left(\frac{\partial G}{\partial N}\right)_{T,P}

G=NμG = N\mu

An easy way to interpret this result is that μ\mu is just the gibbs free energy per particle