# Final exam review material

# Boltzman factor

eβE=eEikTe^{-\beta E} = e^{-\frac{E_i}{kT}}

Probability a system will occur in a given state is proportional to the Boltzman factor

# The Partition function

Z(T)=i=1keβEZ(T) = \sum_{i=1}^{k} e^{-\beta E}

Can be written as a sum over all distinct energies with Ω(E)\Omega(E) being the number of states with energy EE. Known as multiplicity

Z(T)=Energies EΩ(E)eβEZ(T) = \sum_{\text{Energies E}} \Omega(E)e^{-\beta E}

# Average Energy

Eˉ=i=1kP(i)Ei=i=1keβEiZEi=1Zi=1kEieβEi\bar{E} = \sum_{i=1}^{k}P(i)E_i = \sum_{i=1}^{k} \frac{e^{-\beta E_i}}{Z} E_i = \frac{1}{Z}\sum_{i=1}^{k}E_i e^{\beta E_i}

Can also be written as:

Eˉ=EkP(E)E=EΩ(E)eβEZE=1ZEΩ(E)eβEE\bar{E} = \sum_{E}^{k}P(E)E = \sum_{E} \frac{\Omega(E)e^{-\beta E}}{Z}E = \frac{1}{Z}\sum_{E}\Omega(E)e^{-\beta E}E

or

\bar{E} = -\frac{1}{Z}\frac{\partial Z}{\partial \beta}|_{V,N} = -\frac{\partial (\ln{Z})}{\partial \beta}|_{V,N}$

where

Z=energies EΩ(E)eβEZ = \sum_{\text{energies E}}\Omega(E)e^{-\beta E}

# Microcannonical / Cannonical approach

Hold at constant volume VV and number of particles NN

# Microcannonical

  • fix internal energy UU
  • find multiplicity Ω(U,V,N)\Omega(U,V,N)
  • S=klnΩS = k \ln{\Omega}
  • T1=SUV,NT^{-1} = \frac{\partial S}{\partial U}|_{V,N}

# Cannonical

  • fix temperature TT
  • find partition function Z(T,V,N)Z(T,V,N)
  • F=kTlnZF = -kT\ln{Z}
  • U=lnZβV,NU = -\frac{\partial \ln{Z}}{\partial \beta}|_{V,N}

# Partition function of N indistinquishable particles

ZN=(Z1)NZ_N = (Z_1)^N

# Dilute limit

A system is in the dilute limit if the number of thermodynamically accessible states is much, much larger than the number of particles. In this limit, the probability of any 2 particles being in the same state is negligibly small.

# Bosons vs Fermions

Important note: Bosons can share states whereas fermions cannot share states due to the Pauli exclusion principal.

# Gibbs factor

Thermodynamic identity for UU implies then,

ΔUR=TΔSRPΔVR+μΔNR\Delta U_R = T\Delta S_R - P\Delta V_R + \mu\Delta N_R

then assuming volume doesn't change, let ΔUR=E\Delta U_R = -E and ΔNR=N\Delta N_R = -N

E=TΔSRμN-E = T\Delta S_R - \mu N

ΔSR=ET+μNT\rightarrow \boxed{\Delta S_R = -\frac{E}{T} + \frac{\mu N}{T}}

The probability of this state, also known as the Gibb's factor, is proportional to

P(N,E)eΔSR/k=eβ(EμN)\boxed{P(N,E)\approx e^{\Delta S_R/k} = e^{-\beta(E-\mu N)}}

# Distributions

Knowing the distribution n(E)n(E), one can calculate the average number of particles in a system

N=states in(Ei)N = \sum_{\text{states }i} n(E_i)

and the average internal energy of a system

U=states in(Ei)EiU = \sum_{\text{states }i} n(E_i)E_i

# Fermi-Dirac distribution

Z=1+eβ(ϵμ)Z = 1 + e^{-\beta(\epsilon - \mu)}

Average number of particles in state of energy ϵ\epsilon:

nFDˉ=1eβ(ϵμ)+1\bar{n_{\text{FD}}} = \frac{1}{e^{\beta(\epsilon - \mu)} + 1}

# Bose-Einstein distribution

Z=11+eβ(ϵμ)Z = \frac{1}{ 1 + e^{-\beta(\epsilon - \mu)}}

Average number of particles in state of energy ϵ\epsilon:

nFDˉ=1eβ(ϵμ)1\bar{n_{\text{FD}}} = \frac{1}{e^{\beta(\epsilon - \mu)} - 1}

# Boltzman distribution

nˉboltzman=1eβ(ϵμ)=eβ(ϵμ)\bar{n}_{\text{boltzman}} = \frac{1}{e^{\beta(\epsilon - \mu)}} = e^{-\beta(\epsilon - \mu)}

# Density of states

Density of states, g(E)g(E) is the number of 1-particle states per unit of energy.

g(E)=ΔkΔEg(E) = \frac{\Delta k}{\Delta E}

Number of states between 2 energies:

k(E1,E2)=E1E2dk=E1E2g(E)dE\boxed{k(E_1,E_2) = \int_{E_1}^{E_2}dk = \int_{E_1}^{E_2}{g(E)} dE}

Knowing the density of state g(E)g(E) and how many particles occupy each state n(E)n(E) allow us to determine both the total number of particles in the system and what the internal energy of the system is.

# of particles: N=states in(Ei)=n(E)dk=n(E)g(E)dE\text{\# of particles: }N = \sum_{\text{states }i}n(E_i) = \int n(E)dk = \int n(E) g(E) dE

internal energy: U=statesiEin(Ei)=En(E)dk=En(E)g(E)dE\text{internal energy: } U = \sum_{\text{states} i}E_in(E_i) = \int En(E)dk = \int En(E)g(E)dE

# Helmholtz free energy

Helmholtz free energy measures the useful work obtainable from a closed thermodynamic system at constant temeprature and volume.

F=UTS\boxed{F = U - TS}

Alternate forms:

ΔF=ΔUTΔS\Delta F = \Delta U - T\Delta S

ΔF=Q+WTΔS\Delta F = Q + W - T\Delta S

F=kTlnZF = -kT\ln Z

  • FF must stay the same if a process is reversible, Q=TΔSQ = T\Delta S
  • FF must decrease if a process is irreversible, Q<TΔSQ < T\Delta S

# Gibbs free energy

Gibbs free energy is a thermodynamic potential used to calculate maximum of reversible work performed by a thermodynamic system at constant temperature and pressure.

ΔG=ΔHTΔS\boxed{\Delta G = \Delta H - T\Delta S}

Alternate forms:

G=U+PVTSG = U + PV - TS

G=F+PVG = F + PV

  • Spontaneous process will have ΔG<0\Delta G < 0
  • Non-Spontaneous process will have ΔG>0\Delta G > 0
  • Phase with lower Gibbs free energy is more stable

# Entropy

Entropy is an extensive property (depends on size of system) of a thermodynamic system.

S=kBlnΩ\boxed{S = k_B\ln{\Omega}}

  • Spontaneous process will have ΔS>0\Delta S > 0 at constant volume and energy

# Batteries

# Heat generated

Q=TΔS=ΔGΔH\boxed{Q = -T\Delta S = \Delta G - \Delta H}

# Voltage of battery

voltage=work2×NA×e\boxed{\text{voltage} = \frac{work}{2\times N_A \times e^-}}

# Entropy in universe

ΔS=QT=ΔHΔGT\Delta S = \frac{-Q}{T} = \frac{\Delta H - \Delta G}{T}

# Power emitted by hot surfaces

# How fast energy is leaking out

U˙=energytime=(intensity)(area)\dot{U} = \frac{\text{energy}}{\text{time}} = (\text{intensity})(\text{area})

# Intensity

# General formula

I=Intensity=energy(time)(area)I = \text{Intensity} = \frac{\text{energy}}{(\text{time})(\text{area})}

# For spheres

IT4R2I \propto T^4R^2

# Chemical potential

Chemical potential is an intensive quantity (independant on size of system) that is the same when two systems are in diffusive equilibrium

μTSNU,V\boxed{\mu \equiv -T\left.\frac{\partial S}{\partial N}\right\vert_{U,V}}

Alternate forms:

μ=(kTlnZ)NT,V,N\mu = \left. \frac{\partial (-kT \ln Z)}{\partial N}\right\vert_{T,V,N}

  • particles flow from high potential to low potential
  • relates to free energy by μi=(FNi)T,V,Nji\mu_i = \left.(\frac{\partial F}{\partial N_i})\right\vert_{T,V,N_{j\neq i}} where F=kTlnZF = -kT\ln Z

# Stirling's approximation

lnn!=nlnnn+O(lnn)\boxed{\ln n! = n\ln n - n + O(\ln n)}