# Important Equations

# Angular Momentum

Lx=12(L++L)L_x = \frac{1}{2}(L_+ + L_-)

Ly=12i(L+L)L_y = \frac{1}{2i}(L_+ - L_-)

Lzl,m=ml,mL_z|l,m\rangle = \hslash m|l,m\rangle

L±l,m=l(l+1)m(m±1)l,m±1L_{\pm}|l,m \rangle = \hslash\sqrt{l(l+1)-m(m\pm 1)}|l,m\pm 1\rangle

Lx2l,m=Lx(Lxl,m)L_x^2|l,m\rangle = L_x(L_x|l,m\rangle)

Ly2l,m=Ly(Lyl,m)L_y^2|l,m\rangle = L_y(L_y|l,m\rangle)

Lz2l,m=Lz(Lzl,m)L_z^2|l,m\rangle = L_z(L_z|l,m\rangle)

L2=Lx2+Ly2+Lz2L^2 = L_x^2 + L_y^2 + L_z^2

L2l,m=2l(l+1)l,mL^2|l,m\rangle = \hslash^2l(l+1)|l,m\rangle

# Spins

Sx=12(S++S)S_x = \frac{1}{2}(S_+ + S_-)

Sy=12i(S+S)S_y = \frac{1}{2i}(S_+ - S_-)

Szs,m=ms,mS_z|s,m\rangle = \hslash m |s,m\rangle

S±s,m=s(s+1)m(m±1)s,m±1S_{\pm}|s,m\rangle = \hslash\sqrt{s(s+1)-m(m\pm 1)}|s,m\pm 1\rangle

S2s,m=2s(s+1)s,mS^2|s,m\rangle = \hslash^2s(s+1)|s,m\rangle

Sx=2[0110]S_x = \frac{\hslash}{2}\begin{bmatrix}0 & 1\\ 1 & 0\end{bmatrix}

Sy=2(0ii0)S_y = \frac{\hslash}{2}\begin{pmatrix}0 & -i\\ i & 0\end{pmatrix}

Sz=2(1001)S_z = \frac{\hslash}{2}\begin{pmatrix}1 & 0\\ 0 & -1\end{pmatrix}

S2=342(1001)S^2 = \frac{3}{4}\hslash^2\begin{pmatrix}1 & 0\\ 0 & 1\end{pmatrix}

S+=(0100)S_+ = \hslash\begin{pmatrix}0 & 1\\ 0 & 0\end{pmatrix}

S=(0010)S_- = \hslash\begin{pmatrix}0 & 0\\ 1 & 0\end{pmatrix}

=(10)\uparrow = \begin{pmatrix} 1\\0 \end{pmatrix}

=(01)\downarrow = \begin{pmatrix} 0\\1 \end{pmatrix}

P+z=χ2=(10)(χ0,0χ1,0)2P_{+z} = |\langle\uparrow|\chi\rangle|^2 = |\begin{pmatrix} 1&0 \end{pmatrix} \begin{pmatrix} \chi_{0,0} \\ \chi_{1,0} \\ \end{pmatrix}|^2

Pz=χ2=(01)(χ0,0χ1,0)2P_{-z} = |\langle\downarrow|\chi\rangle|^2 = |\begin{pmatrix} 0&1 \end{pmatrix} \begin{pmatrix} \chi_{0,0} \\ \chi_{1,0}\\ \end{pmatrix}|^2

P+y=χ+yχP_{+y} = \langle \chi_{+y}|\chi\rangle

Py=χyχP_{-y} = \langle \chi_{-y}|\chi\rangle

Syχ+y=2χ+yS_{y}\chi_{+y} = \frac{\hbar}{2}\chi_{+y}

Syχy=2χyS_{y}\chi_{-y} = \frac{\hbar}{2}\chi_{-y}

Sz=χSzχ=χSzχ\langle S_z \rangle = \langle \chi | S_z | \chi \rangle = \chi^*S_z\chi

Sx=χSxχ=χSsχ\langle S_x \rangle = \langle \chi | S_x | \chi \rangle = \chi^*S_s\chi

Sy=χSyχ=χSyχ\langle S_y \rangle = \langle \chi | S_y | \chi \rangle = \chi^*S_y\chi

# The hydrogen atom

Rn,l(r)=1rρl+1eρv(ρ)R_{n,l}(r) = \frac{1}{r}\rho^{l+1}e^{-\rho}v(\rho)

ΨHΨ=E×P\langle\Psi|H|\Psi\rangle = \sum E \times P

Energy levels: En=E0n2E_n = \frac{E_0}{n^2}

# Clebsch-Gordan coefficients

ll and ss tell which table to look at. mm and sss_s or szs_z tell which column to look at.